قانون محيط ربع الدائرة

قانون محيط ربع الدائرة

قانون حساب محيط ربع الدائرة

يشكّل محيط ربع الدائرة المسافة المحيطة به من الخارج، ويتشكّل محيط ربع الدائرة من جزءٍ منحنٍ وجزأين مستقيمين، لذلك يُمكن الوصول إلى قانون حسابه بعدّة خطوات تتلّخص بما يأتي:

  • حساب محيط الجزء المنحني الذي يساوي ربع محيط دائرة كاملة، ويساوي نتيجة قسمة محيط الدائرة كاملة على على العدد (4) ، كما يأتي: ¼×(2πنق).
  • تبسيط المسألة للحصول على محيط الجزء المنحني وهو: (πنق)/2.
  • حساب طول الجزأين المستقيمين وكلاهما أنصاف أقطار للدائرة وطولهما نق، للحصول على طول الجزء المستقيم وهو: 2نق.
  • وبإضافة المقدارين إلى بعضهما يمكن الحصول على محيط ربع الدائرة كاملاً، وهو: محيط ربع الدائرة= محيط الجزء المنحني محيط الجزأين المستقيمين، وبالرموز: محيط ربع الدائرة= πنق/2 2نق.
  • ثمّ بأخذ نق كعامل مشترك ينتج القانون العام المستخدم لحساب محيط ربع الدائرة، وهو:

محيط ربع الدائرة= نصف قطر الدائرة (π/2 2)

وبالرموز:

محيط ربع الدائرة = نق(π/2 2)

حيث أن:

  • نق: نصف قطر الدائرة.
  • π: باي، ثابت عددي قيمته 3.14 أو 22/7.

أمثلة حول حساب محيط ربع الدائرة

وفيما يأتي أمثلة متنوعة حول حساب محيط ربع الدائرة:

  • المثال الأول: دائرة نصف قطرها 21 سم، ما هو محيط ربعها؟ (π= 22/7).
    • الحل:
    • تعويض قيمة نصف القطر التي تساوي 21 سم في قانون محيط ربع الدائرة= نق×(π/2 2)
    • ومنه محيط نصف الدائرة= 21×(π/2 2))=(75 سم)
  • المثال الثاني: ما هو محيط ربع دائرة نصف قطرها 7 سم؟ (π= 22/7).
    • الحل:
    • تعويض قيمة نق التي تساوي 7 سم في قانون محيط ربع الدائرة= نق×(π/2 2)
    • ومنه محيط نصف الدائرة= 7×(π/2 2)= (25 سم)
  • المثال الثالث: ما هو محيط ربع دائرة نصف قطرها 4.2 سم؟ (π= 22/7).
    • الحل:
    • تعويض قيمة نق التي تساوي 4.2 سم في قانون محيط ربع الدائرة= نق×(π/2 2)
    • ومنه محيط نصف الدائرة= 4.2×(π/2 2)= (15 سم)
  • المثال الرابع: ما هو محيط ربع دائرة نصف قطرها 14 سم؟ (π= 22/7).
    • الحل:
    • تعويض قيمة نق التي تساوي 14 سم في قانون محيط ربع الدائرة= نق×(π/2 2)
    • ومنه محيط نصف الدائرة= 14×(π/2 2)= (50 سم)
  • المثال الخامس: إذا كان محيط ربع دائرة هو 25 سم، ما هي مساحة ربع الدائرة؟(π= 22/7).
    • الحل:
    • حساب قيمة نصف القطر نق بتعويض قيمة محيط ربع الدائرة في قانون محيط ربع الدائرة= نق×(π/2 2)، ومنه 25= نق(2 2/(22/7))، وبحل المعادلة ينتج أن: نق= 7 سم.
    • تعويض قيمة نق في قانون مساحة ربع الدائرة= π×(نق²)/4
    • ومنه مساحة ربع الدائرة= π×(7²)/4= (38.5 سم²)

نظرة عامة حول ربع الدائرة

يُمكن تعريف ربع الدائرة (بالإنجليزية: Quadrant) على أنه ذلك الجزء من الدائرة الذي يمثّل ربعها، أو القطاع الدائري الذي يمثّل ربع الدائرة، وفي المقابل يُعرف القطاع الدائري الذي يمثّل نصف الدائرة باسم نصف الدائرة (بالإنجليزية:Semicircle)، وبشكل عام إن زاوية ربع الدائرة هي 90 درجة، ويتم الحصول عليه بتقسيم الدائرة إلى أربعة أقسام متساوية بواسطة خطين متعامدين يشكّل كل منهما قطراً لهذه الدائرة.

11تعليم
مزيد من المشاركات
ما هو عدد الكروموسومات في جسم الإنسان

ما هو عدد الكروموسومات في جسم الإنسان

عدد الكروموسومات في جسم الإنسان يختلفُ عددُ الكروموسومات من كائنٍ حيّ لآخر، حيثُ تحتوي كلُّ خلية في جسم الإنسان على ستة وأربعين كروموسوماً، تأتي على شكل أزواج لتشكل ثلاثةً وعشرين زوجاً من الكروموسومات ، تتشابه جميعُها عند كلٍّ من الذكور والإناث حتى الزوج الثاني والعشرين، ويبقى الزوج الأخير، والذي يعد مسؤولاً عن تحديد الجنس سواءً أكان ذكراً، أم أنثى، ويُرمَز له عند الذكر XY وعند الأنثى XX. ما هي الكروموسومات تُعرَف الكروموسومات بأنّها أجزاءُ دقيقة مكوّنة من الحمض النووي (DNA) تشبهُ الخيوطَ إلى
أسواق مدينة كوانزو الصينية

أسواق مدينة كوانزو الصينية

التجارة في الصين تُعدّ الصين من البلدان العالمية الأولى في مجال التجارة، بل إنّها قفزت خلال العام 2016م إلى المرتبة الأولى في مجال التبادلات التجارية، لتُزيح بذلك الولايات المتحدة الأمريكية عن مركزها كأكبر قوّة تجارية في العالم؛ وذلك حين تمّ الإعلان عن بلوغ حجم مبادلاتها التجاريّة لأوّل مرّة لأربعة آلاف مليار دولار، وتتمتع هذه الدولة بالعديد من العوامل الجيدة للاقتصاد المُهمّة لنجاحها كوجود المدن التجاريّة التي تشكّل بأسواقها فرصةً للاستثمار والتبضّع، ومن ضمنها مدينة كوانزو بأسواقها الشهيرة،
أمثلة على الحيوانات المنقرضة

أمثلة على الحيوانات المنقرضة

أمثلة على الحيوانات المُنقرضة عند موت جميع أفراد حيوان معين، يحدث الانقراض، وعادةً ما تكون التغيرات المناخية، والممارسات البشرية السلبية؛ كالصيد ، والتلوث؛ هما أبرز الأسباب وراء هذا الانقراض، فعلى مر الزمان كان هناك الكثير من الأمثلة على الحيوانات المُنقرضة، ومنها ما يأتي: طائر الدودو يعدّ طائر الدودو (الاسم العلمي: Raphus cucullatus) من الطيور التي عاشت في جزيرة موريشيوس في المحيط الهندي ، وكان وزنها يصل إلى 23 كيلوغراماً، كما كانت تمتلك رأساً كبير الحجم، وريش أزرق ورمادي اللون، تم اكتشاف هذا
المرحلة الرابعة من سرطان الغدد اللمفاوية

المرحلة الرابعة من سرطان الغدد اللمفاوية

المرحلة الرابعة من سرطان الغدد اللمفاوية يُصنَّف سرطان الغدد اللمفاوية في المرحلة الرابعة عندما ينتشر إلى جزء آخر من الجسم خارج الجهاز اللمفاوي مثل الكبد، أو الرئة، أو الحبل الشوكي، إذ يبدأ سرطان الغدد اللمفاوية في الجهاز اللمفاوي، وتحديداً في نوع من أنواع خلايا الدم البيضاء تسمى الخلايا اللمفاوية، وتعتمد توقّعات تطور المرض على عددٍ من العوامل؛ مثل عمر المصاب ونوع السرطان. أنواع المرحلة الرابعة من سرطان الغدد اللمفاوية يُقسَّم سرطان الغدد اللمفاوية إلى نوعين، وهما: لمفوما هودجكين: تتميّز
فوائد الخزامى للحمل

فوائد الخزامى للحمل

هل الخزامى مفيدة للحمل في الحقيقة ليست هناك دراساتٌ تشير إلى فوائد الخزامى؛ أو ما يُعرف باللافندر (بالإنجليزية: Lavender) للحامل بشكلٍ خاص، كما أنّه لم يتمّ تأكيد سلامة استهلاك الخزامى أثناء الحمل أو الرضاعة الطبيعية بشكلٍ علميٍّ حتى الآن، لذا يُنصح بالبقاء على الجانب الآمن، وتجنّب استخدامها خلال فترة الحمل، كما يجب استشارة الطبيب دائماً قبل تناول أي عشبة أو مكمّل غذائي خلال هذه الفترة. نظرة حول الخزامى وفوائدها العامة الخزامى أو ما يعرف باللافندر (الاسم العلمي: Lavandula angustifolia L) هي
أجمل ما قيل عن كبرياء الرجل

أجمل ما قيل عن كبرياء الرجل

الكبرياء الكبرياء هي رفض الذل والهوان والاعتزاز بالكرامة، وربما قاد الكبرياء إلى الغرور وخسر صاحبه الكثير، فالكبرياء سيف ذو حدين إن لم يصحبها الاعتدال عادت بالضرر على صاحبها، الكبرياء لا يتحلى به إلا الأقوياء والشجعان الذين زرعوا في ذاتهم العزة والقوة، وفي هذه المقالة سنقدم لكم ما قال الأدباء والشعراء عن الكبرياء وعزة النفس. كلمات عن الكبرياء وعزة النفس عزة النفس أن تسمو وتبتعد عن كل من يقلل من قيمتك. عزة النفس ليست لساناً ساخراً وطبعاً متكبراً، عزة النفس هي أن تبتعد عن كل ما يقلل من قيمتك.
ما فوائد التلبينة

ما فوائد التلبينة

التلبينة التلبينة عبارة عن حساء يصنع من النخالة، وسمّيت بهذا الاسم تشبيهاً باللبن بلونها الأبيض وقوامها الناعم، وهي من الوصفات الطبية التي وصلت إلينا من نبينا عليه الصلاة والسلام وأوصانا بها لما لها من فوائد جمّة.(عنْ عَائِشَةَ زَوْجِ النَّبِيِّ صَلَّى اللَّهُ عَلَيْهِ وَسَلَّمَ أَنَّهَا كَانَتْ إِذَا مَاتَ الْمَيِّتُ مِنْ أَهْلِهَا فَاجْتَمَعَ لِذَلِكَ النِّسَاءُ ، ثُمَّ تَفَرَّقْنَ إِلا أَهْلَهَا وَخَاصَّتَهَا ، أَمَرَتْ بِبُرْمَةٍ مِنْ تَلْبِينَةٍ فَطُبِخَتْ ، ثُمَّ صُنِعَ ثَرِيدٌ فَصُبَّتْ
حديث عجباً لأمر المؤمن

حديث عجباً لأمر المؤمن

حديث عجبا لأمر المؤمن روى صهيب الرومي عن رسول الله -صلّى الله عليه وسلّم- أنّه قال: (عَجَبًا لأَمْرِ المُؤْمِنِ، إنَّ أمْرَهُ كُلَّهُ خَيْرٌ، وليسَ ذاكَ لأَحَدٍ إلَّا لِلْمُؤْمِنِ، إنْ أصابَتْهُ سَرَّاءُ شَكَرَ، فَكانَ خَيْرًا له، وإنْ أصابَتْهُ ضَرَّاءُ، صَبَرَ فَكانَ خَيْرًا له)، ويدل الحديث على فضل ومكانة خُلقيّ الصبر والشكر، وضرورة تحلّي المؤمن بهما في كل أوقاته، والمُراد بالمؤمن المذكور في الحديث هو المصدّق بقدر الله وقضائه، والراضي بما كتبه الله له، المنتظر لوعد الله وجزائه، فهذا المؤمن